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ABSTRACT 
Multistate Markov models are well-established methods for estimating rates of transition between stages of 

chronic diseases. The objective of this study is to propose a stochastic model that describes the progression 

process of chronic kidney disease; CKD, estimate the mean time spent in each stage of disease stages that 

precedes developing end-stage renal failure and to estimate the life expectancy of a CKD patient. Continuous-

time Markov Chain is appropriate to model CKD. Explicit expressions of transition probability functions are 

derived by solving system of forward Kolmogorov differential equations. Besides, the mean sojourn time, the 

state probability distribution, life expectancy of a CKD patient and expected number of patients in each state of 

the system are presented in the study. A numerical example is provided. Finally, concluding remarks and 

discussion are presented. 

Keywords-Chronic Kidney Disease , Continuous-Time Markov Chain , Kolmogorov Differential Equations , 

Expected Time to Absorption,  Stochastic Processes . 

 

I. INTRODUCTION 
Recently,non-communicableand chronic diseases have become the major causes of morbidity and mortality 

around the world[1]. One of these diseases is Chronic Kidney Disease which is defined according to the 

presence or absence of kidney damage and level of kidney function, irrespective of the etiology of kidney 

disease. Chronic Kidney Disease “CKD” is a worldwide public health problem. It forms a substantial burden for 

developed societies [21, 11, 22]as well as in developing countries [2, 3, 4, 26, 15, 23]. For example, in Egypt, 

there are more than 25000 patients with End-Stage Renal Disease “ESRD” and this number have drastically 

increased over the latest decades [12]. 

One of the strategies of defeating any chronic disease is to detect it early side by side with the national 

planning for insuring sufficient treatment of patients. The earlier the CKD is detected the easier to keep the 

patients in their primary stages and delaying their transition to more severe stages using suitable treatments and 

suitable lifestyle regime.  

Multistate models based on Markov processes are solid methods for estimating rates of transition between 

stages of diseases. Covariates like age, sex, occupation, previous residence, other chronic diseases, effect of a 

given intervention …etc. can be fitted to the transition rates. The expected output of these models help in 

enhancing the national health policies and forming any preventative strategies of CKD and exploring it in earlier 

stages where the development of the disease can be revised or prevented. For example, the mean sojourn time 

that the patient spends in the various states of the process,an important concept of multistate Markov models, 

may be weighted by cost or utility of a given intervention, then it is used to calculate expected costs and 

outcomes, thus it allows for comparisons between competing alternatives. 

Stochastic models help in understanding the mechanism of diseases in terms of explaining relationships 

between developing and progressing in disease stages and other relevant covariates. Applications of stochastic 

processes in medicine and their use in controlling disease-related morbidity and mortality have been attempted 

by number of authors[13, 18, 14, 5, 27, 25]. The objective of stochastic modeling of diseases vary between 

research. Number of authorswho modeled diseases in order to assess the cost-effectiveness of a new intervention 

or new technology [6].Another objective of stochastic models is  calculate disease progression and use them in 

controlling diseases-related mortality. It was used in controlling Cancer-related mortality [18]. Jackson et 

al.(2003) presented a general Hidden Markov model for simultaneously estimating transition rates and 

probabilities of stage misclassification when diagnosis of disease stages are subject to error.Later in 2007, Shih 

and others proposed a method for estimating progression of a chronic disease with multistate properties -Type 2 

Diabetes- by unifying the prevalence pool concept with the Markov Process Model. Recently, Begun et 

al.(2012) proposed a multistate continuous-time nonhomogeneous Markov model for describing patients with 
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decreased renal function in order to quantify disease progression and its predictor covariates using observable 

data. 

 

The main goal of this study is to propose a stochastic model that describes the progression process of CKD,  

to estimate the mean time spent in each stage of the disease stagesand to estimate the life expectancy of a CKD 

patient.  

 

II. Methods 
Stochastic processes modeling approach is utilized to develop a model of the progression of CKD.General 

model of disease progression proposed by Jackson et al.(2003). Their general model is consisting of a varying 

number of transient states and an absorbing state. Themodel allows for moving progressively from milder to 

more severe disease stages and vice versa.At the same time it allows  moving from any of the disease stage to an 

absorbing stage. 

The general model of disease progression of Jackson et al. (2003)can be used to describe the progression of  

CKD which is defined, according to the Kidney Disease Outcomes Quality Initiative (KDOQI) classification for 

CKD, in terms of staged progressive irreversible deterioration of kidney function. CKD processis illustrated 

graphically in Fig.1. 

It is noticed from Fig.1 and from the definition of CKD as a staged progressive irreversible disease that the 

state space of the progression process is discrete, but the process is continuous with respect to time. The states of 

CKD that will be considered in the study are defined in Table .1.  

Continuous-time Markov chain, “CTMC” is appropriate to model CKD since the patient condition 

deterioration is continuous in time. A CTMC  is said to be homogenous in time if the probability of going from 

one state to another is independent of the time on which the transition occurs. Homogeneity in time holds true 

for the process of CKD. Hence, one can assume that the finite homogenous continuous-time Markov chain may 

be an appropriate model of  CKD. 

Table (1): Definition of the States of the CKD Model 

State No. State Name GFR, ml/min 

1 Kidney damage with mild reduction in GFR 60 -90 

2 Kidney damage with moderate reduction in GFR 30-59 

3 Kidney damage with severe reduction in GFR 15-29 

4 ESRD implying RRT (regardless of GFR) < 15 

5 Death  

GFR ; glomerular filtration rate: to measure level of kidney function and determine stage of kidney disease. 
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Depending on the general illustrative model of CKD progression presented in Fig.1, the transition rate 

matrix of the CKD Progression Model is as follows: 

𝑉 =

 

 
 

−𝜆12 − 𝜆15 𝜆12 0 0 𝜆15

0 −𝜆23 − 𝜆25 𝜆23 0 𝜆25

0 0 −𝜆34 − 𝜆35 𝜆34 𝜆35

0 0 0 −𝜆45 𝜆45

0 0 0 0 0  

 
 

 

 

𝑉 is a 5×5  matrix, its elements  𝜆𝑖𝑗  are the instantaneous rates of transition from one state to another. It 

can be noticed that  𝜆𝑖𝑗  is independent of time because the CKD process is homogenous with respect to time. 

Sometimes matrix V is called the generator matrix or the infinitesimal matrix. The elements of 𝑉 are the model 

parameters which are population-specific and should be estimated when data is available using the appropriate 

method of estimation. The initial state probability is given by π0i t = 0  = p x0  =  Si . This can be written as 

a vector:  

Π 0 =   π01 π02 π03 π04 0  
This probability defines the probability of being in one of the states of the process at the beginning of the 

study. Using the analogy of CKD progression process, the initial vector indicates the initial condition of the 

CKD patients defined as the proportions of patients in each state of the process at the beginning of the study. 

Entries of initial vector should be nonnegative and their sum should equal to one. 

Let us also define the transition probability, pij (τ, t), which indicates the probability of being in state i 

at time τ and would be in statej at time t. The transition probabilities pij (τ, t) can also be represented in matrix 

form.  

P(τ, t) =

 

 
 

p11(τ, t) p12 (τ, t) p13 (τ, t) p14 (τ, t) p15(τ, t)

p21(τ, t) p22 (τ, t) p23 (τ, t) p24(τ, t) p25(τ, t)
p31(τ, t) p32 (τ, t) p33 (τ, t) p34(τ, t) p35(τ, t)

p41(τ, t) p42 (τ, t) p43 (τ, t) p44(τ, t) p45(τ, t)

p51(τ, t) p52 (τ, t) p53 (τ, t) p54(τ, t) p55(τ, t) 

 
 

 

The rows of P(τ, t) should satisfy the same conditions of the initial state probability vector. The 

transition probability matrix contains all information necessary to model the movement of a patient among the 

course of CKD until death.  

ACTMC is fully characterized oncethe transition rate between different states of the system, V, is specified,  

or conversely when its transition probability matrix is specified along with the expected sojourn time of each 

state[7]. 

For simpler CTMC’s whose transition rate matrix contains a lot of zero elements, it is appropriate to define 

transition probability functions in terms of transition intensities through solving system of Kolmogorov 

differential equations.  

Kolmogorov’s differential equations play central role in the treatment of Markov processes in continuous 

time. The forward Kolmogorov differential equations (1) describethe probability distribution of a state in time 

𝑡keeping the initial point fixed by a so-called “last step analysis”. On the other hand, the backward Kolmogorov 

differential equations (2) describes the transition probabilities in their dependence on the initial point 𝑖by the 

“first step analysis”. 
∂

∂t
 P τ, t =  P τ, t  ×  V       (1) 

with the initial condition 

P τ, τ = I 
where I is the identity matrix. And  

∂

∂τ
 P τ, t =  − V ×  P τ, t       (2) 

with the initial condition 

P t, t = I 
[8] 

Solving system of forward Kolmogorov differential equations yields into the transition probabilities as 

functions of  λij ′s which are the model parameters. Those parameters are very essential to the solution of the 

system. These parameters may be estimated by different ways. 

Possibility1: When we have a set of observed data where patients are observed in different time points. One can 

form a likelihood function that reflects all the contributions for all transitions between different observations 

using the solution of the system of Kolmogorov differential equations as the probability density of transitions 
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between each pair of states of the system. Then one can obtain maximum likelihood estimates of the model 

parameters. 

Possibility 2: Monte Carlo Markov Chain simulation may be used to simulate life time patient-level trajectories 

between different states of the system. This requires knowledge of the probability distribution underlying the 

parameters of the system. This usually requires a lot of time as this application needs a lot of simulations if the 

data set required is large.  

The main objective of this article is to present a solution of  the system of  forward Kolmogorov equation of 

CKD process. Then presenting  forms of some extractor functions that may be of great importance for the 

clinicians and health policy makers.  

 

III. Model 
3.1 Transition Probability Functions 

There are different ways for obtaining an analytical expression for each element of P τ, t  in terms of 

the model parameter V, such as finding the matrix exponentials of the generator matrix V, method of successive 

approximations, and the spectral methods. For special models, it is possible to calculate an analytic expression 

for each element of P τ, t  by solving the forward Kolmogorov differential equations in (1). This is generally 

quicker and avoids the possible numerical instability of finding the matrix exponentials [14]. 

By solving  system of equations in  (1), we get 

P11 τ, t =  e− c1  (t−τ) (3) 

where    c1 =  λ12 +  λ15 ,  

P12 τ, t =   
λ12

(c2 − c1)
 [ e− c1 t−τ  −   e− c2 t−τ ] (4) 

where    c2 =  λ23 + λ25 , 

 

P13 τ, t =   
λ12  .  λ23

 c2 − c1  c3 − c1 
 .  e− c1 t−τ  −  

λ12  .  λ23

 c2 − c1  c3 − c2 
 e− c2 t−τ 

+  
λ12  .  λ23

 c3 − c1  c3 − c2 
 e− c3 t−τ  

(5) 

where    c3 =  λ34 + λ35 , 

 

P14 τ, t =   
λ12  .  λ23   .  λ34

 c2 − c1  c3 − c1  λ45 − c1 
 e− c1 t−τ  −  

λ12  .  λ23  .  λ34

 c2 − c1  c3 − c2  λ45 − c2 
 e− c2 t−τ  

                   +  
λ12  .  λ23   .  λ34

 c3 − c1  c3 − c2  λ45 − c3 
 e− c3 t−τ −

λ12  .  λ23   . λ34

 λ45 − c1  λ45 − c2  λ45 − c3 
e−λ45 (t−τ) 

(6) 

 

P15 τ, t =  − 
a1

c1

 .  e− c1 t−τ − 
a2

c2

 .  e− c2 t−τ −  
a3

c3

 .  e− c3 t−τ −
a4

λ45

 e−λ45 t−τ + 

 
a1

c1

+  
a2

c2

+
a3

c3

+
a4

λ45

  

(7) 

where 

a1 =  λ15 + 
λ12 .λ25

(c2−c1)
+  

λ12  .  λ23   . λ35

 c2−c1  c3−c1 
+  

λ12  .  λ23   . λ34  . λ45

 c2−c1  c3−c1 ( λ45−c1)  
 , 

a2 =  − 
λ12 .λ25

 c2−c1 
− 

λ12  .  λ23   . λ35

 c2−c1  c3−c2 
− 

λ12  .  λ23   . λ34  . λ45

 c2−c1  c3−c2  ( λ45−c2)  
 , 

a3 =   
λ12  .  λ23   . λ35

 c3−c1  c3−c2 
+ 

λ12  .  λ23   . λ34  . λ45

 c3−c1  c3−c2 ( λ45−c3)  
 , 

a4 =  − 
λ12  .  λ23   . λ34  . λ45

  λ45−c1   λ45−c2 ( λ45−c3)  
 , 
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P21 τ, t =  0 (8) 

P22 τ, t =   e− c2  (t−τ) (9) 

P23 τ, t =   
λ23

(c3 − c2)
 [ e− c2 t−τ  −   e− c3 t−τ ] (10) 

where    c3 =  λ34 + λ35 ,   

 

P24 τ, t =   
λ23 .  λ34

 c3 − c2   λ45 − c2 
 .  e− c2 t−τ  −  

λ23 .  λ34

 c3 − c2   λ45 − c3 
 e− c3 t−τ 

+   
λ23 .  λ34

  λ45 − c2   λ45 − c3 
 e−  λ45 t−τ  

(11) 

P25 τ, t =  − 
b1

c2

 .  e− c2 t−τ − 
b2

c3

 .  e− c3 t−τ −  
b3

 λ45

 .  e−  λ45 t−τ +  
b1

c2

+  
b2

c3

+
b3

 λ45

  (12) 

 

where 

b1 =  λ25 +  
λ23 .λ35

(c3−c2)
+  

λ23   . λ34  .λ45

 c3−c2   λ45−c2 
 , 

b2 =  − 
λ23 .λ35

 c3−c2 
− 

λ23   . λ34  .λ45

 c3−c2   λ45−c3 
,  

b3 =   
λ23   . λ34  . λ45

  λ45−c2   λ45−c3 
 , 

P31 τ, t =  0 (13) 

P32 τ, t =   0 (14) 

P33 τ, t =   e− c3  (t−τ) (15) 

P34 τ, t =   
λ34

(λ45 − c3)
 [ e− c3 t−τ  −   e− λ45 t−τ ] (16) 

P35 τ, t =  − 
d1

c3

 .  e− c3 t−τ −  
d2

 λ45

 .  e−  λ45 t−τ +  
d1

c3

+
d2

 λ45

  (17) 

where 

d1 =  λ35 +  
λ34 . λ45 

(λ45 − c3)
 , 

d2 =  −
λ34 .λ45 

(λ45−c3)
, 

P41 τ, t =  0 (18) 

P42 τ, t =   0 (19) 

P43 τ, t =   0 (20) 

P44 τ, t =   e− λ45  (t−τ) (21) 
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P45 τ, t =  1 − e− λ45  (t−τ) (22) 

P51 τ, t =  0 (23) 

P52 τ, t =   0 (24) 

P53 τ, t =   0 (25) 

P54 τ, t =   0 (26) 

P55 τ, t =  1 (27) 

 

It makes sense that we have Pij τ, t =   0 for i > 𝑗 as CKD is irreversible progressive disease, and 

P55 τ, t =  1  since state “5” represents “Death” which is absorbing.  

 

3.2 Mean sojourn time 

 

Since CKD is one of the progressive diseases, the patient is not supposed to have many visits to a 

single state. In other words, the mean sojourn time which describes the expected duration of a single stay in a 

state will be equivalent to the total length of stay or the mean time spent by the patient in a given state of the 

process. 

The mean sojourn time in a state of a CTMC is calculated in terms of transition rates. It is assumed that 

the sojourn times ej ′s are independent and exponentially distributed random variables with mean 
1

λ j
  [9] where 

λj = −λjj  for j = 1, … ,4. 

 

 

Hence, we conclude that 

e1 =  
1

λ12 + λ15

 (28) 

e2 =  
1

λ23 + λ25

 (29) 

e3 =  
1

λ34 + λ35

 (30) 

e4 =  
1

λ45

 (31) 

 

3.3 State Probability Distribution 

It is important to estimate the state probability distribution of CKD process in order to calculate the 

probability that the system will be in a particular state at a specific time point t. Let us assume that the state 

probability distribution, sometimes known by the marginal distribution, of the process at time t is Π t . For 

homogenous CTMC, Π t  can be evaluated by solving the following system of  differential equations  

Π′ t = Π t × V (32) 

with the initial condition Π 0 =   π01 π02 π03 π04 0 . 

Generally, the solution of this system of equations depends on the form of 𝑉. Our hope for a solution in some 

special cases depends on 𝑉 resulting in a simple system of equations. 
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The solution of (32) are as follows: 

π1(t) =  π01e−c1t  (33) 

π2(t) =  
λ12π01

(c2 − c1)
e−c1t +  π02 −

λ12π01

 c2 − c1 
 e−c2t  (34) 

 

π3 t =
λ23λ12π01

 c2 − c1  c3 − c1 
e−c1t +  

λ23π02

 c3 − c2 
−

λ23λ12π01

 c2 − c1  c3 − c2 
 e−c2t  

             +  π03 −
λ23λ12π01

 c2 − c1  c3 − c1 
−

λ23π02

 c3 − c2 
+

λ23λ12π01

 c2 − c1  c3 − c2 
 e−c3t  

(35) 

 

π4 t =  
λ34λ23λ12π01

 c2 − c1  c3 − c1  λ45 − c1 
e−c1t

+  
λ34λ23π02

 c3 − c2  λ45 − c2 
−

λ34λ
23

λ12π01

 c2 − c1  c3 − c2  λ45 − c2 
 e−c2t  

        +  
λ34π03

 λ45 − c3 
−

λ34λ23λ12π01

 c2 − c1  c3 − c1  λ45 − c3 
−

λ34λ23π02

 c3 − c2  λ45 − c3 

+ 
λ34λ

23
λ12π01

 c2 − c1  c3 − c2  λ45 − c3 
 e−c3t  

        +  π04 −
λ34λ23λ12π01

 c2 − c1  c3 − c1  λ45 − c1 
−

λ34λ23π02

 c3 − c2  λ45 − c2 

+  
λ34λ

23
λ12π01

 c2 − c1  c3 − c2  λ45 − c2 
−

λ34π03

 λ45 − c3 

+
λ34λ

23
λ12π01

 c2 − c1  c3 − c1  λ45 − c3 
+

λ34λ23π02

 c3 − c2  λ45 − c3 

−
λ34λ

23
λ12π01

 c2 − c1  c3 − c2  λ45 − c3 
 e−λ45 t 

(36) 

 

and 

π5 t =
−f1

c1

e−c1t +
−f2

c2

e−c2t +
−f3

c3

e−c3t +
−f4

λ45

e−λ45 t +  
f1

c1

+
f2

c2

 +
f3

c3

+
f4

λ45

  (37) 

where, 

f1 = λ15π01 +
λ25λ12π01

 c2 − c1 
+

λ35λ23λ12π01

 c2 − c1  c3 − c1 
+ 

λ45λ34λ23λ12π01

 c2 − c1  c3 − c1  λ45 − c1 
 

 

f2 = λ25π02 −
λ25λ12π01

 c2 − c1 
+

λ35λ23π02

 c3 − c2 
−

λ35λ23λ12π01

 c2 − c1  c3 − c2 
+

λ45λ34λ23π02

 c3 − c2  λ45 − c2 

−
λ45λ34λ

23
λ12π01

 c2 − c1  c3 − c2  λ45 − c2 
 

 

f3 = λ35π03 −
λ35λ23λ12π01

 c2 − c1  c3 − c1 
−

λ35λ23π02

 c3 − c2 
+

λ35λ23λ12π01

 c2 − c1  c3 − c2 
+ 

λ45λ34π03

 λ45 − c3 

−
λ45λ34λ23λ12π01

 c2 − c1  c3 − c1  λ45 − c3 
−

λ45λ34λ23π02

 c3 − c2  λ45 − c3 
+ 

λ45λ34λ
23

λ12π01

 c2 − c1  c3 − c2  λ45 − c3 
 

 

f4 = λ45π
04

−
λ45λ34λ23λ12π01

 c2 − c1  c3 − c1  λ45 − c1 
−

λ45λ34λ23π02

 c3 − c2  λ45 − c2 
+ 

λ45λ
34

λ
23

λ12π01

 c2 − c1  c3 − c2  λ45 − c2 

−
λ45λ

34
π03

 λ45 − c3 
 

+
λ45λ

34
λ

23
λ12π01

 c2 − c1  c3 − c2  λ45 − c3 
−

λ45λ
34

λ23π02

 c3 − c2  λ45 − c3 
+

λ45λ
34

λ
23

λ12π01

 c2 − c1  c3 − c2  λ45 − c3 
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3.4 life expectancy of a CKD Patient 

For CKD process with 5 states, where the first four are transient states and the last is absorbing. We can 

partition the system as follows: 

 

 

 

 

 

 

 

 

 

Also, we can partition the Kolmogorov forward differential equations in (1) as follows: 

[P′ t pκ
′ (t)] = [P t pκ(t)]  

B A
0 0

  (38) 

Where the matrix B is the transition matrix within transient states, the column vector A is the transition rates 

from the transient states to the absorbing state. Hence, A =  −B 1T , where 1T  is a (k − 1) × 1 column vector all 

its elements are ones.  

The system of equations in (38) may be written as follows, 

 
P′ t = P t  B

pn
′  t = P t  A

  
(39-a) 

(39-b) 

Solving (39-a), we get  

P t = P 0 eBt  (40) 

 

Substituting by (40) in (39-b), we have 

pn
′  t = P 0 eBt A (41) 

Note that eBt  is the matrix exponentials of B, defined as follows: 

eBt = I + Bt +
1

2
(Bt)2 +  

1

3
(Bt)3 + ⋯ =   

1

i!
 Bt i

∞

i=0

 (42) 

According to [8] as well as other authors, the solution of the first equation of (39-a) given in equation 

(40) is an explicit solution of the forward Kolmogorov equation and P 0 is the transition probability matrix at 

initial time point t =  0 which equals to I, the identity matrix.  

Given that τκ  is the time to reach the absorbing state from the initial time point, we have 

Fκ t = pr τκ ≤ t = pr  X t = κ =  pκ t =  1 − P t 1T =  1 −  P 0 eBt 1T  (43) 

Random variables which have cumulative distribution function of such form presented in (43), their 

mean and other moments can be evaluated using the moment theorem for Laplace transforms. 

First, CTMC with an absorbing state will be presented in Laplace transform such that 

[sP∗ s − P(0)   spκ
∗ (s)] = [P∗ s p∗

κ
(s)]  

B A
0 0

  (44) 

Hence, equation (44) is presented as follows 

 
sP∗ s − P(0)    = P∗ s    B

spκ
∗ (s) = P∗ s  A

  (45) 

And (40) and (41)  will be: 

 
P∗ s    = P 0 (sI − B)−1

pκ
∗  s =

1

s
P∗ s  A =

1

s
 P 0 (sI − B)−1  A

  (46) 

It turns out that: 



Noura AnwarInt. Journal of Engineering Research and Applications                             www.ijera.com  

ISSN : 2248-9622, Vol. 4, Issue 11( Version 1),November 2014, pp.08-19 

 www.ijera.com                                                                                                                                  16|P a g e  

F∗
κ t =

1

s
 P 0 (sI − B)−1 A  (47) 

and 

f ∗
κ t = s F∗

κ t =  P 0 (sI − B)−1 A  (48) 

Then we can evaluate the mean time to absorption (with A = −B 1T), 

E τκ =   −1 
df ∗

κ t 

ds
 

s=0

 

                                =   −1 P 0  sI − B −2 A s=0 

            = P 0  −B −11T  

(49) 

[7] 

 

Hence, life expectancy of a CKD patient can be evaluated using (49), where 

B =   

−λ12 − λ15 λ12 0 0
0 −λ23 − λ25 λ23 0
0 0 −λ34 − λ35 λ34

0 0 0 −λ45

 ,   

and  P 0 = I. 
Thus, 

E τ15 =  
1

λ12 + λ15

+ 
λ12  (λ23 + λ25 )

λ12 + λ15

+
λ12λ23  (λ34 + λ35 )

(λ12 + λ15)(λ23 + λ25 )

+
λ12λ23λ34(λ23 + λ25)(λ45 )

(λ12 + λ15)(λ34 + λ35)
 

(50) 

E τ25 =  
1

λ23 + λ25

+ 
λ23  (λ34 + λ35 )

λ23 + λ25

+
λ23λ34λ45

(λ23 + λ25 )(λ34 + λ35 )
 (51) 

E τ35 =  
1

λ34 + λ35

+  
λ34λ45

λ34 + λ35

 (52) 

E τ45 =  
1

λ45

 (53) 

 

The mean time to absorption is equivalent to the life expectancy of a CKD patient, therefore E τi5 , i =
1, … ,4  can be interpreted as follows: the life expectancy of a patient given that he observed his illness in state i.     
 

3.5 Expected Number of Patients in Each State 

let m(0) be the size of patients an initial time point t = 0. The initial size of patients m 0 =
  mj(0)4

j=1 , where mj(0) is the initial size of patients at state j given that there is m5 0 = 0 patients at state 5 

which is “Death” at the initial time point. Assuming that patients move independently within the states of the 

system and at the end of the time interval (0, t), there is Mj t for j = 1, … ,4 patients in state j at time t and 

M5 t  deaths at time t. Depending on Chiang (1968)  , then the expected number of patients in each state at time 

t can be computed directly as follows, 

E Mj(t) mj(0) =   mi 0 pij t 

n−1

i=1

             for j = 1, … , n − 1. (54) 

and  
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E M5(t) mj(0) =   mi 0 pi5 t 

n−1

i=1

       ∀j                      (55) 

Equation (54) can be presented in details as follows 

E M1 t  m1 0  =  m1 0 p11 t  (56) 

E M2 t  m1 0 , m2 0  =  m1 0 p12 t + m2 0 p22 t  (57) 

E M3 t  m1 0 , m2 0 , m3 0  =  m1 0 p13 t + m2 0 p23 t + m3 0 p33 t  (58) 

E M4 t  m1 0 , m2 0 , m3 0 , m4 0  
=  m1 0 p14 t + m2 0 p24 t + m3 0 p34 t + m4 0 p44 t  (59) 

and the expected number of deaths will be 

E M5(t) m1 0 , m2 0 , m3 0 , m4 0  
= m1 0 p15 t + m2 0 p25 t + m3 0 p35 t + m4 0 p45 t  (60) 

 

IV. Numerical Example 
This example is adapted from the study of Begun et al. (2013). They used data from a dialysis center 

serving a region of 310,000 inhabitants. the sample consisted of 2097 CKD patient with at least 2 measurements 

during January 2005 to December 2010. Our system, showed in figure (1) consists of 5 states. The states of the 

system are defined in Table.1.  

Given V =  

 

 
 

−0.16 0.15 0 0 0.01
0 −0.37 0.27 0 0.1
0 0 −1.37 1.27 0.1
0 0 0 −1.8 1.8
0 0 0 0 0  

 
 

 

We find the one-year transition probability matrix as follows 

P(1) =

 

 
 

0.85 0.11 0.02 0.003 0.02
0 0.69 0.19 0.06 0.06
0 0 0.25 0.27 0.48
0 0 0 0.16 0.84
0 0 0 0 1  

 
 

 

 

The mean time spent by a CKD patient in state 1 approximately equals 6 years and 3 months, while it 

decreases in state 2to be about 2 years and 9 months. The deterioration in health state of  a CKD patient become 

rapid in more severe stages than mild stages since the mean time spent by a patient in states 3 and 4 of the 

system is about 8 and 6 months respectively. 

Assuming that the initial distribution of patients among the states of the system is 

Π 0 =   0.4 0.3 0.2 0.1 0 , then the distribution of this cohort of patients after one year will be 

approximately as follows: Π 1 =   0.34 0.25 0.11 0.08 0. 22 . 

The life expectancy of a patient is about 8 years given that he entered the system in state 1, 5 years for 

state 2, 2years and 6 months for state 3 and about 7 months for state 4. 

Let m 0 = 1000 paitients and divided among the five states of the system as follows, 

 300 200 400 100 0 . Then the expected distribution of this cohort of CKD patients after 1 year is 

 255 171 144 136 294 .  

 

V. Discussion 
Chronic diseases represent a major concern to health policy makers, especially in developing countries. 

When a disease is detected at an early stage, it may be more amenable to treatment [13]. Knowledge about the 

progression of chronic diseases is important because it may help health policy makers to evaluate expected 

burden of disease in future and to evaluate cost effectiveness of competing interventions. The Markov chain 
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approach is often used for analyzing progression of diseases by describing the time evolution of an individual in 

the multistate model [5]. 

CTMC is more appropriate than discrete-time Markov chain for studying patient progression through 

successive stages of a chronic disease where transitions may be slow, therefore have small probabilities and 

cannot be described accurately in discrete time units. Kolmogorov’s differential equation plays a key role in 

defining uniquely CTMC. The solution of Kolmogorov’s differential equation depends on the form of the 

generator matrix of the model. For simpler forms of the generator matrix, the analytical solution of 

Kolmogorov’s forward system of differential equation is achievable. The resulting Mathematical relations 

between the probability of transition and rate of transition can be used to formulate a likelihood function of 

transitions, then estimating the elements of the generator function which is the model parameters. 

One should take into consideration some important precautions when estimating the model parameters. For 

example, kinds of data that may exhibit different types of censoring and pay attention to what form of 

probability density reflects accurately the observed transitions of a patient in order to formulate realistic 

likelihood of transitions that yields in a maximum likelihood estimate of the generator matrix the closest 

description to reality of the natural history of the disease. Begun and others, in 2012, considered three kinds of  

data structure that can be met in such studies and differentiated between the contributions of possible transitions 

to the full likelihood which is then used to obtain the maximum likelihood estimate to model parameters. 

Kalbfleicsh and Lawless in 1985, and recently Jackson in 2011, presented a general methods for evaluating 

the likelihood for general multistate model in continuous time depending on the form of the transition 

probability matrix. They differentiated between likelihood for intermittently-observed processes, in other words 

panel data, exactly-observed death times, exactly-observed transition times and censored states.  

Some advanced models may be applicable to model natural history of chronic diseases, such as hidden 

Markov models(see for example, [13]), continuous-time latent Markov model (see for example, [19])  and semi-

Markov models (see for example, [10]). 

In conclusion, we have presented an explicit form of the transition probability matrix of CKD process with 

5 states, the first four of them represent the 2nd, 3rd, 4th , and ESRD of CKD according to the KDOQI 

classification, and the last state is death. Besides, we presented also explicit forms for some important extractor 

functions which depends primarily on the transition instantaneous rates. 
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